Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enzyme-Enzyme Interactions in Monolignol Biosynthesis.

Identifieur interne : 000F22 ( Main/Exploration ); précédent : 000F21; suivant : 000F23

Enzyme-Enzyme Interactions in Monolignol Biosynthesis.

Auteurs : Jack P. Wang [États-Unis, République populaire de Chine] ; Baoguang Liu [République populaire de Chine] ; Yi Sun [République populaire de Chine] ; Vincent L. Chiang [États-Unis, République populaire de Chine] ; Ronald R. Sederoff [États-Unis]

Source :

RBID : pubmed:30693007

Abstract

The enzymes that comprise the monolignol biosynthetic pathway have been studied intensively for more than half a century. A major interest has been the role of pathway in the biosynthesis of lignin and the role of lignin in the formation of wood. The pathway has been typically conceived as linear steps that convert phenylalanine into three major monolignols or as a network of enzymes in a metabolic grid. Potential interactions of enzymes have been investigated to test models of metabolic channeling or for higher order interactions. Evidence for enzymatic or physical interactions has been fragmentary and limited to a few enzymes studied in different species. Only recently the entire pathway has been studied comprehensively in any single plant species. Support for interactions comes from new studies of enzyme activity, co-immunoprecipitation, chemical crosslinking, bimolecular fluorescence complementation, yeast 2-hybrid functional screening, and cell type-specific gene expression based on light amplification by stimulated emission of radiation capture microdissection. The most extensive experiments have been done on differentiating xylem of Populus trichocarpa, where genomic, biochemical, chemical, and cellular experiments have been carried out. Interactions affect the rate, direction, and specificity of both 3 and 4-hydroxylation in the monolignol biosynthetic pathway. Three monolignol P450 mono-oxygenases form heterodimeric and heterotetrameric protein complexes that activate specific hydroxylation of cinnamic acid derivatives. Other interactions include regulatory kinetic control of 4-coumarate CoA ligases through subunit specificity and interactions between a cinnamyl alcohol dehydrogenase and a cinnamoyl-CoA reductase. Monolignol enzyme interactions with other pathway proteins have been associated with biotic and abiotic stress response. Evidence challenging or supporting metabolic channeling in this pathway will be discussed.

DOI: 10.3389/fpls.2018.01942
PubMed: 30693007
PubMed Central: PMC6340093


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enzyme-Enzyme Interactions in Monolignol Biosynthesis.</title>
<author>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Baoguang" sort="Liu, Baoguang" uniqKey="Liu B" first="Baoguang" last="Liu">Baoguang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forestry, Beihua University, Jilin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forestry, Beihua University, Jilin</wicri:regionArea>
<wicri:noRegion>Jilin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yi" sort="Sun, Yi" uniqKey="Sun Y" first="Yi" last="Sun">Yi Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30693007</idno>
<idno type="pmid">30693007</idno>
<idno type="doi">10.3389/fpls.2018.01942</idno>
<idno type="pmc">PMC6340093</idno>
<idno type="wicri:Area/Main/Corpus">000A57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A57</idno>
<idno type="wicri:Area/Main/Curation">000A57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A57</idno>
<idno type="wicri:Area/Main/Exploration">000A57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enzyme-Enzyme Interactions in Monolignol Biosynthesis.</title>
<author>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Baoguang" sort="Liu, Baoguang" uniqKey="Liu B" first="Baoguang" last="Liu">Baoguang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forestry, Beihua University, Jilin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forestry, Beihua University, Jilin</wicri:regionArea>
<wicri:noRegion>Jilin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yi" sort="Sun, Yi" uniqKey="Sun Y" first="Yi" last="Sun">Yi Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The enzymes that comprise the monolignol biosynthetic pathway have been studied intensively for more than half a century. A major interest has been the role of pathway in the biosynthesis of lignin and the role of lignin in the formation of wood. The pathway has been typically conceived as linear steps that convert phenylalanine into three major monolignols or as a network of enzymes in a metabolic grid. Potential interactions of enzymes have been investigated to test models of metabolic channeling or for higher order interactions. Evidence for enzymatic or physical interactions has been fragmentary and limited to a few enzymes studied in different species. Only recently the entire pathway has been studied comprehensively in any single plant species. Support for interactions comes from new studies of enzyme activity, co-immunoprecipitation, chemical crosslinking, bimolecular fluorescence complementation, yeast 2-hybrid functional screening, and cell type-specific gene expression based on light amplification by stimulated emission of radiation capture microdissection. The most extensive experiments have been done on differentiating xylem of
<i>Populus trichocarpa</i>
, where genomic, biochemical, chemical, and cellular experiments have been carried out. Interactions affect the rate, direction, and specificity of both 3 and 4-hydroxylation in the monolignol biosynthetic pathway. Three monolignol P450 mono-oxygenases form heterodimeric and heterotetrameric protein complexes that activate specific hydroxylation of cinnamic acid derivatives. Other interactions include regulatory kinetic control of 4-coumarate CoA ligases through subunit specificity and interactions between a cinnamyl alcohol dehydrogenase and a cinnamoyl-CoA reductase. Monolignol enzyme interactions with other pathway proteins have been associated with biotic and abiotic stress response. Evidence challenging or supporting metabolic channeling in this pathway will be discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30693007</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Enzyme-Enzyme Interactions in Monolignol Biosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>1942</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01942</ELocationID>
<Abstract>
<AbstractText>The enzymes that comprise the monolignol biosynthetic pathway have been studied intensively for more than half a century. A major interest has been the role of pathway in the biosynthesis of lignin and the role of lignin in the formation of wood. The pathway has been typically conceived as linear steps that convert phenylalanine into three major monolignols or as a network of enzymes in a metabolic grid. Potential interactions of enzymes have been investigated to test models of metabolic channeling or for higher order interactions. Evidence for enzymatic or physical interactions has been fragmentary and limited to a few enzymes studied in different species. Only recently the entire pathway has been studied comprehensively in any single plant species. Support for interactions comes from new studies of enzyme activity, co-immunoprecipitation, chemical crosslinking, bimolecular fluorescence complementation, yeast 2-hybrid functional screening, and cell type-specific gene expression based on light amplification by stimulated emission of radiation capture microdissection. The most extensive experiments have been done on differentiating xylem of
<i>Populus trichocarpa</i>
, where genomic, biochemical, chemical, and cellular experiments have been carried out. Interactions affect the rate, direction, and specificity of both 3 and 4-hydroxylation in the monolignol biosynthetic pathway. Three monolignol P450 mono-oxygenases form heterodimeric and heterotetrameric protein complexes that activate specific hydroxylation of cinnamic acid derivatives. Other interactions include regulatory kinetic control of 4-coumarate CoA ligases through subunit specificity and interactions between a cinnamyl alcohol dehydrogenase and a cinnamoyl-CoA reductase. Monolignol enzyme interactions with other pathway proteins have been associated with biotic and abiotic stress response. Evidence challenging or supporting metabolic channeling in this pathway will be discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jack P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Baoguang</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Forestry, Beihua University, Jilin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sederoff</LastName>
<ForeName>Ronald R</ForeName>
<Initials>RR</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">BiFC</Keyword>
<Keyword MajorTopicYN="N">co-immunoprecipitation</Keyword>
<Keyword MajorTopicYN="N">enzyme kinetics</Keyword>
<Keyword MajorTopicYN="N">lignin</Keyword>
<Keyword MajorTopicYN="N">monolignol biosynthesis</Keyword>
<Keyword MajorTopicYN="N">protein-protein interaction</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30693007</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01942</ArticleId>
<ArticleId IdType="pmc">PMC6340093</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8955-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1537-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6725-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):557-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 23;279(4):2600-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Nov;16(11):3098-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15472080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:85-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15725058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Jun;8(3):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):230-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2006 May-Jun;22(3):609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16739940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Feb 29;367(1):47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):278-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jan;51(1):144-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Jan;3(1):2-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20035037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2010 Mar;147(3):297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20068028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jul;187(2):273-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20642725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2010;655:65-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20734254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2011 Sep 15;83(18):7020-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21851065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Mar;161(3):1501-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23344904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1987;56:89-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2441660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1977 Jan;134(2):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24419691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1975 Jan;125(2):115-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24435336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):894-914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):876-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2014 Sep;9(9):2194-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Dec;166(4):1956-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25315601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2016 Feb;37:190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26775114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):2166-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2017 May;245(5):927-938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28083709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Feb 9;11:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29449882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Mar 6;13(3):e0193896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29509777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Apr 20;9(1):1579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29679008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2018 May;4(5):299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29725099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Oct 1;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30276825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Jun 15;222(3):843-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8026495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1976 Jun 14;104(1):243-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">957432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1998 Sep;123(1):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774543</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
</region>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
</noRegion>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Liu, Baoguang" sort="Liu, Baoguang" uniqKey="Liu B" first="Baoguang" last="Liu">Baoguang Liu</name>
<name sortKey="Liu, Baoguang" sort="Liu, Baoguang" uniqKey="Liu B" first="Baoguang" last="Liu">Baoguang Liu</name>
<name sortKey="Sun, Yi" sort="Sun, Yi" uniqKey="Sun Y" first="Yi" last="Sun">Yi Sun</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30693007
   |texte=   Enzyme-Enzyme Interactions in Monolignol Biosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30693007" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020